

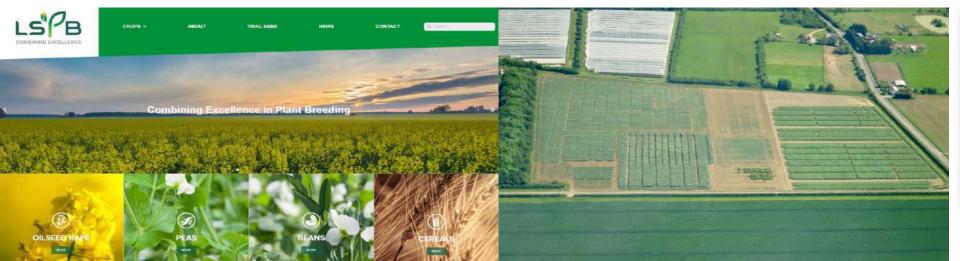
Rapeseed in the UK – Learnings for a Changing Climate



Webinar - 13/12/23

# **AGENDA**




- Introduction
  - Chris Guest
- Updates & Changes to the new AHDB RL a breeder's perspective
  - Dr. Andreas Girke, WOSR Breeder, NPZ
- Rapeseed in the UK Setting the Scene/Challenge
  - Chris Guest
- Development of OSR in a maritime climate
  - Prof. Dr. Ute Kropf, University of Applied Sciences, Kiel
- Summary & Conclusion
- Questions?



# WHO ARE WE?



- UK based plant breeding company wholly owned by NPZ
- UK breeding programme for oilseed rape, beans and peas
- UK agency for spring wheat.
- LSPB wheat breeding programme with WvB Eckendorf and Wiersum Plant Breeding.





**LSPB IMPINGTON** 

# **CORE VALUES**



## **Innovation**

- Introduced Clubroot resistance to the OSR market
- NPZ invented MSL hybrid system
- Bringing new LVC traits to revolutionise bean markets
- New Phoma resistance trait RImS

## **Excellence**

- Breeding OSR varieties specifically for UK conditions
- High yielding OSR varieties on RL – Turing/Murray/Vegas
- Top yielding yellow & green peas
- Representing high yielding spring wheat

## **Transparency**

- Honesty in all aspects of our work.
- Open dialogue with all sectors of the supply chain
- Data backed marketing

# WHO ARE NPZ?



- NPZ are a medium sized, privately owned German plant breeding company – located at two stations in Northern Germany
- Founded in 1897
- NPZ is a leading breeder of oilseed rape, field beans and field peas with a long track record of breeding successful varieties for the UK grower.
- Their philosophy is to keep the best of a traditional approach while investing in the latest technologies in plant breeding.



NPZ MALCHOW-POEL



NPZ HOHENLIETH



#### What can we learn from the new edition of Recommended list?"





#### **Dr. Andreas Girke**

Winter Rapeseed Breeder at Norddeutsche Pflanzenzucht Online Seminar of LSPB, 13th of December 2023



#### Impact of Recommended lists in Europe





- Based on the last survey from AHDB (2022) major feedback was: "that almost all aspects of our commercial and politically independent work are valuable…"
  - AHDB's Recommended Lists, which gives levy payers the opportunity to compare varieties on an independent, consistent and fair basis, was ranked as the most important work that we fund.
- Similar approach is running in Czech Republic by SPZO
  - Instead of fungicide focus (treated/untreated), varieties are tested under warm/cold conditions (weather)
- In both cases, trial experiences are base for commercial variety decisions





#### AHDB Recommended list 2024/25

| AHDB<br>RECOMMENDED                          | LG Armada   | LG Academic | LG Adeline | Hybrid | Little O | LG Auckland | Allica | Mybrid | SS ON | Ambassador | LG Wagner | Aurella | LG Avion | LG Adonis | Hybrid | Hybrid | Lennyson |   |
|----------------------------------------------|-------------|-------------|------------|--------|----------|-------------|--------|--------|-------------------------------------------|------------|-----------|---------|----------|-----------|--------|--------|----------|---|
| Scope of recommendation                      | UK          | UK          | UK         | UK     | E/W      | E/W         | UK     | E/W    | UK                                        | E/W        | N         | UK      | UK       | E/W       | UK     | E/W    | E/W      |   |
| Variety status                               | NEW         | NEW         | NEW        |        | NEW      |             |        |        |                                           | С          |           | С       | •        | •         | •      | •      | •        |   |
| Gross output, yield adjusted for oil content | t (% treate | ed control) |            |        |          |             |        |        |                                           |            |           |         |          |           |        |        |          |   |
| United Kingdom (5.1 t/ha)                    | 107         | 106         | 106        | 106    | 105      | 105         | 105    | 105    | 104                                       | 104        | 103       | 103     | 102      | 101       | 101    | 99     | 96       | _ |
| East/West region (5.0 t/ha)                  | 106         | 106         | 106        | 106    | 106      | 105         | 105    | 105    | 104                                       | 104        | 102       | 103     | 102      | 101       | 101    | 100    | 97       |   |
| North region (6.0 t/ha)                      | 107         | 107         | 108        | 105    | [102]    | 103         | 104    | 102    | 102                                       | 101        | 108       | 102     | 103      | 100       | 100    | 92     | 93       |   |
| Seed yield (% treated control)               |             |             |            |        |          |             |        |        |                                           |            |           |         |          |           |        |        |          |   |
| United Kingdom (4.8 t/ha)                    | 106         | 106         | 106        | 107    | 103      | 104         | 105    | 105    | 104                                       | 104        | 103       | 103     | 103      | 100       | 100    | 99     | 96       | П |
| East/West region (4.7 t/ha)                  | 106         | 106         | 106        | 107    | 103      | 105         | 105    | 106    | 104                                       | 104        | 102       | 103     | 103      | 100       | 100    | 100    | 97       |   |
| North region (5.5 t/ha)                      | 107         | 107         | 109        | 107    | [100]    | 102         | 104    | 103    | 102                                       | 102        | 108       | 103     | 104      | 99        | 100    | 92     | 94       |   |
| Untreated yield (% untreated control) - UK   |             |             |            |        |          |             |        |        |                                           |            |           |         |          |           |        |        |          |   |
| Gross output (5.3 t/ha)                      | -           | -           | -          | 103    | -        | 105         | 102    | 105    | 106                                       | 103        | [106]     | 104     | 105      | 102       | 100    | 96     | 94       | _ |
| Seed yield (4.9 t/ha)                        | -           |             |            | 104    |          | 104         | 102    | 105    | 105                                       | 103        | [106]     | 104     | 107      | 101       | 100    | 96     | 94       |   |
| Disease resistance                           |             |             |            |        |          |             |        |        |                                           |            |           |         |          |           |        |        |          |   |
| Light leaf spot (1-9)                        | 7           | 7           | 7          | 7      | 6        | 7           | 7      | 7      | 7                                         | 7          | 7         | 7       | 7        | 7         | 7      | 7      | 7        | _ |
| Stem canker (1-9)                            | 6           | 6           | 6          | 4      | 7        | 5           | 5      | 8      | 9                                         | 6          | 5         | 5       | 6        | 6         | 6      | 5      | 7        |   |
| Verticillium                                 | -           | -           | -          | 1      | [MR]     | [1]         | [S]    | [MR]   | [1]                                       | S          | [S]       | [1]     | [S]      | [MR]      | -      | [1]    | [MR]     |   |
| TuYV                                         | R           | R           | R          | -      | R        | R           | R      | -      | -                                         | R          | R         | R       | R        | R         | R      | R      | R        |   |
| Agronomic features                           |             |             |            |        |          |             |        |        |                                           |            |           |         |          |           |        |        |          |   |
| Resistance to lodging (1-9)                  | [8.0]       | [7.9]       | [8.0]      | [7.9]  | [8.0]    | [7.8]       | [7.9]  | [8.0]  | [7.9]                                     | [8.0]      | [8.0]     | [7.9]   | [7.8]    | [7.9]     | [7.9]  | [7.9]  | [7.8]    | Т |
| Stem stiffness (1-9)                         | 8           | 8           | 8          | 8      | 9        | 7           | 8      | 9      | 8                                         | 8          | 8         | 7       | 7        | 8         | [8]    | 8      | 8        |   |
| Shortness of stem (1-9)                      | 5           | 5           | 6          | 6      | 6        | 6           | 6      | 6      | 6                                         | 6          | 6         | 6       | 6        | 6         | 5      | 6      | 6        |   |
| Plant height (cm)                            | 152         | 152         | 150        | 142    | 143      | 148         | 148    | 148    | 143                                       | 146        | 142       | 143     | 147      | 140       | 157    | 143    | 143      |   |
| Earliness of flowering (1-9)                 | 5           | 7           | 7          | 8      | 7        | 7           | 7      | 7      | 7                                         | 7          | 7         | 7       | 8        | 7         | 5      | 7      | 6        |   |
| Earliness of maturity (1–9)                  | 5           | 5           | 5          | 5      | 4        | 5           | 5      | 5      | 5                                         | 6          | 5         | 5       | 6        | 5         | 5      | 5      | 5        |   |
| Pod shatter resistance                       | R           | R           | R          | -      | -        | R           | R      | -      | -                                         | R          | R         | R       | R        | -         | -      | -      | -        |   |
|                                              |             |             |            |        |          |             |        |        |                                           |            |           |         |          |           |        |        |          |   |

- New: LG Armada, LG Academic, LG Adeline & Dolphin
- Varieties no longer listed: Crossfit,
  DK Expectation,
  DK Imprint CL,
  Flemming,
  LG Antigua,
  PT279CL, Respect
  and V316 OL
- (\*) varieties no longer in the trials: LG Aviron, LG Adonis, PT303, Dart and Tennyson



#### Yield progress is visible!

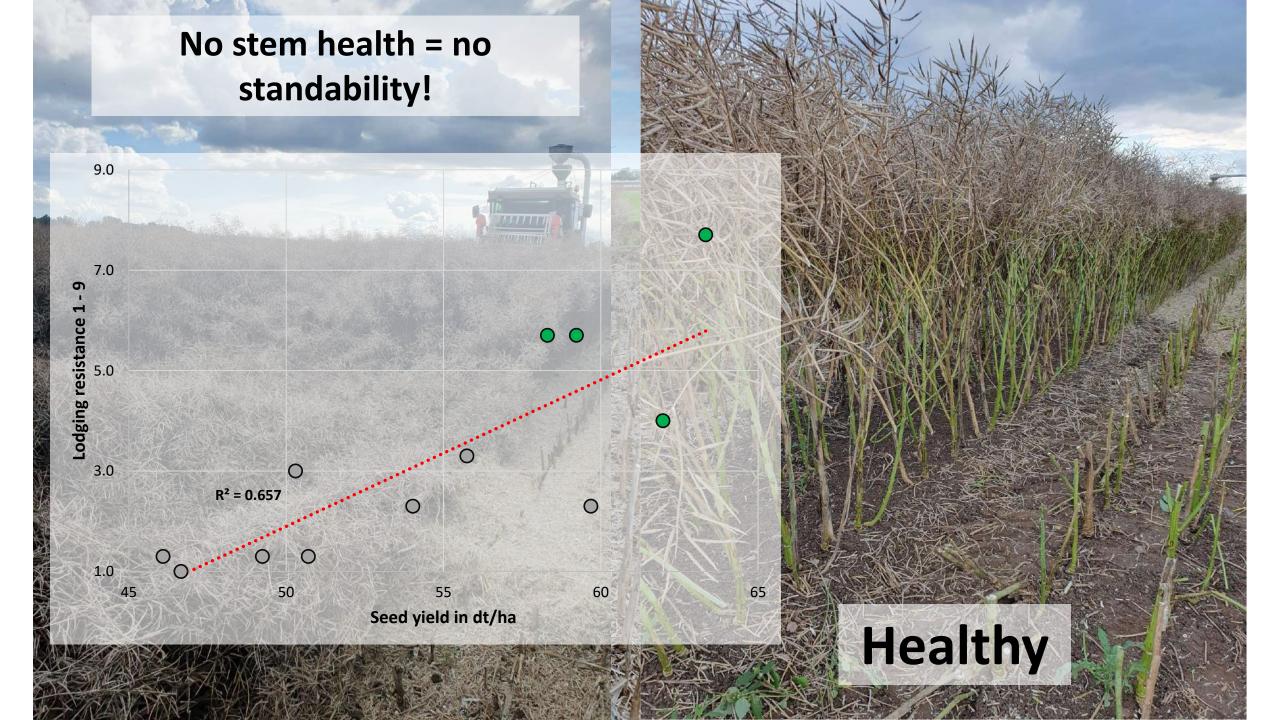


https://ahdb.org.uk/knowledge-library/recommended-lists-for-cereals-and-oilseeds-rl



#### Remarks from RL 2024/25: Verticillium stem stripe & stem canker

- Verticillium stem stripe (Verticillium longisporum) first time on the list
  - Classification of the tested varieties in several categories: susceptible, moderately resistant or intermediate
  - Currently limited data for most of the varieties
  - The need for this disease data based on previous RL review
- Reset of Phoma stem canker (Leptosphaeria maculans) ratings
  - Reaction to a resistance shift over recent years
  - Important: new figures do not mean a change in varietal resistance, more an improvement in the rating calculation process




## AHDB Recommended list 2024/25

| RECOMMENDED                                 | LG Armada   | LG Academic | LG Adeline | Turing | Dolphin | LG Auckland | Attica | Murray | Vegas  | Ambassador | LG Wagner | Aurella | LG Aviron | LG Adonis | PT303  | Dart   | Tennyson |
|---------------------------------------------|-------------|-------------|------------|--------|---------|-------------|--------|--------|--------|------------|-----------|---------|-----------|-----------|--------|--------|----------|
|                                             |             |             |            |        |         |             |        |        | Hybrid |            |           |         |           |           |        |        |          |
| /ariety type                                | Hybrid      | Hybrid      | Hybrid     | Hybrid | Hybrid  | Hybrid      | Hybrid | Hybrid | Hybrid | Hybrid     | Hybrid    | Hybrid  | Hybrid    | Hybrid    | Hybrid | Hybrid | Hybrid   |
| Scope of recommendation                     | UK          | UK          | UK         | UK     | E/W     | E/W         | UK     | E/W    | UK     | E/W        | N         | UK      | UK        | E/W       | UK     | E/W    | E/W      |
| /ariety status                              | NEW         | NEW         | NEW        |        | NEW     |             |        |        |        | С          |           | С       | •         | •         | •      | •      | •        |
| Gross output, yield adjusted for oil conten | t (% treate | d control)  |            |        |         |             |        |        |        |            |           |         |           |           |        |        |          |
| Jnited Kingdom (5.1 t/ha)                   | 107         | 106         | 106        | 106    | 105     | 105         | 105    | 105    | 104    | 104        | 103       | 103     | 102       | 101       | 101    | 99     | 96       |
| East/West region (5.0 t/ha)                 | 106         | 106         | 106        | 106    | 106     | 105         | 105    | 105    | 104    | 104        | 102       | 103     | 102       | 101       | 101    | 100    | 97       |
| North region (6.0 t/ha)                     | 107         | 107         | 108        | 105    | [102]   | 103         | 104    | 102    | 102    | 101        | 108       | 102     | 103       | 100       | 100    | 92     | 93       |
| Seed yield (% treated control)              |             |             |            |        |         |             |        |        |        |            |           |         |           |           |        |        |          |
| Jnited Kingdom (4.8 t/ha)                   | 106         | 106         | 106        | 107    | 103     | 104         | 105    | 105    | 104    | 104        | 103       | 103     | 103       | 100       | 100    | 99     | 96       |
| East/West region (4.7 t/ha)                 | 106         | 106         | 106        | 107    | 103     | 105         | 105    | 106    | 104    | 104        | 102       | 103     | 103       | 100       | 100    | 100    | 97       |
| North region (5.5 t/ha)                     | 107         | 107         | 109        | 107    | [100]   | 102         | 104    | 103    | 102    | 102        | 108       | 103     | 104       | 99        | 100    | 92     | 94       |
| Untreated yield (% untreated control) – UR  |             |             |            |        |         |             |        |        |        |            |           |         |           |           |        |        |          |
| Gross output (5.3 t/ha)                     | -           | -           | -          | 103    | -       | 105         | 102    | 105    | 106    | 103        | [106]     | 104     | 105       | 102       | 100    | 96     | 94       |
| Seed yield (4.9 t/ha)                       | -           | -           | -          | 104    | -       | 104         | 102    | 105    | 105    | 103        | [106]     | 104     | 107       | 101       | 100    | 96     | 94       |
| Disease resistance                          |             |             |            |        |         |             |        |        |        |            |           |         |           |           |        |        |          |
| Light leaf spot (1–9)                       | 7           | 7           | 7          | 7      | 6       | 7           | 7      | 7      | 7      | 7          | 7         | 7       | 7         | 7         | 7      | 7      | 7        |
| Stem canker (1_0)                           | 6           | 6           | 6          | - 4    | 7       | 5           | 5      | 8      | a      | 6          | 6         | 5       | 6         | 6         | 6      | 5      | 7        |
| Verticillium                                | -           | -           | -          | - 1    | [MR]    | [1]         | [S]    | [MR]   | [1]    | S          | [S]       | [1]     | [S]       | [MR]      | -      | [1]    | [MR      |
| TUYV                                        | R           | R           | R          | -      | R       | R           | R      | -      | -      | R          | R         | R       | R         | R         | R      | R      | R        |
| Agronomic features                          |             |             |            |        |         |             |        |        |        |            |           |         |           |           |        |        |          |
| Resistance to lodging (1-9)                 | [8.0]       | [7.9]       | [8.0]      | [7.9]  | [8.0]   | [7.8]       | [7.9]  | [8.0]  | [7.9]  | [8.0]      | [8.0]     | [7.9]   | [7.8]     | [7.9]     | [7.9]  | [7.9]  | [7.8]    |
| Stem stiffness (1–9)                        | 8           | 8           | 8          | 8      | 9       | 7           | 8      | 9      | 8      | 8          | 8         | 7       | 7         | 8         | [8]    | 8      | 8        |
| Shortness of stem (1–9)                     | 5           | 5           | 6          | 6      | 6       | 6           | 6      | 6      | 6      | 6          | 6         | 6       | 6         | 6         | 5      | 6      | 6        |
| Plant height (cm)                           | 152         | 152         | 150        | 142    | 143     | 148         | 148    | 148    | 143    | 146        | 142       | 143     | 147       | 140       | 157    | 143    | 143      |
| Earliness of flowering (1–9)                | 5           | 7           | 7          | 8      | 7       | 7           | 7      | 7      | 7      | 7          | 7         | 7       | 8         | 7         | 5      | 7      | 6        |
| Earliness of maturity (1-9)                 | 5           | 5           | 5          | 5      | 4       | 5           | 5      | 5      | 5      | 6          | 5         | 5       | 6         | 5         | 5      | 5      | 5        |
| Pod shatter resistance                      | R           | R           | R          | -      |         | R           | R      | -      | _      | R          | R         | R       | R         |           | _      |        | -        |

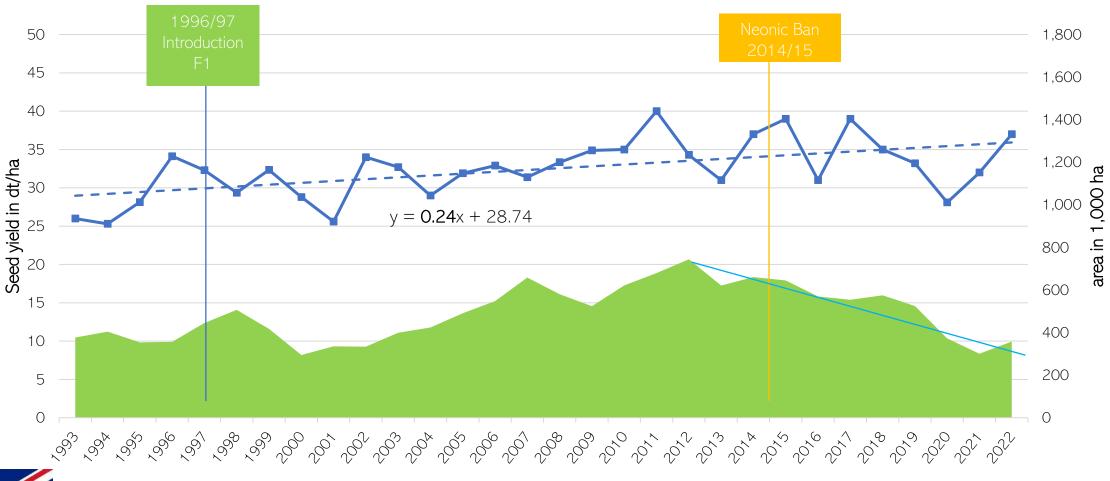








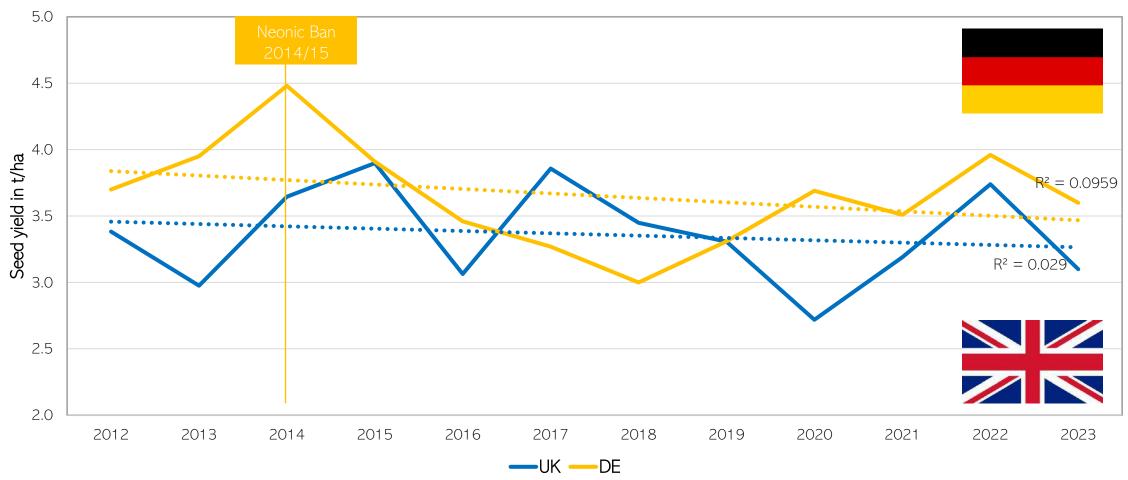
## Status Quo and open questions:


- The value of "Recommended list" is still "up to date"
- Discrepancy between trial results in Recommended lists and practice
- Continous exchange of the recommended portfolio
- Change from "pure" yield testing to wider solutions
  - New highlights: Adaptation in stem canker and adding
     Verticillium stem stripe to the new list
- Future trend to more agronomy solutions?
- Open question: 2 fungicide approach still right? What about 2 different harvest dates as alternative for Pod-shatter resistance "claims"...





# 30 YEARS WOSR IN UK: 1993-2022

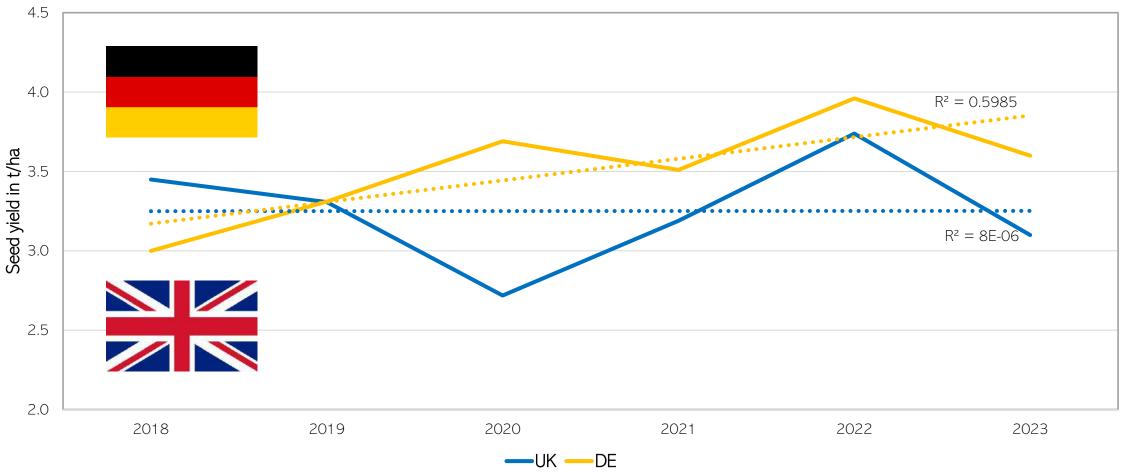







## RAPESEED UNDER PRESSURE (UK VS. GERMANY, 2012 – 2023)

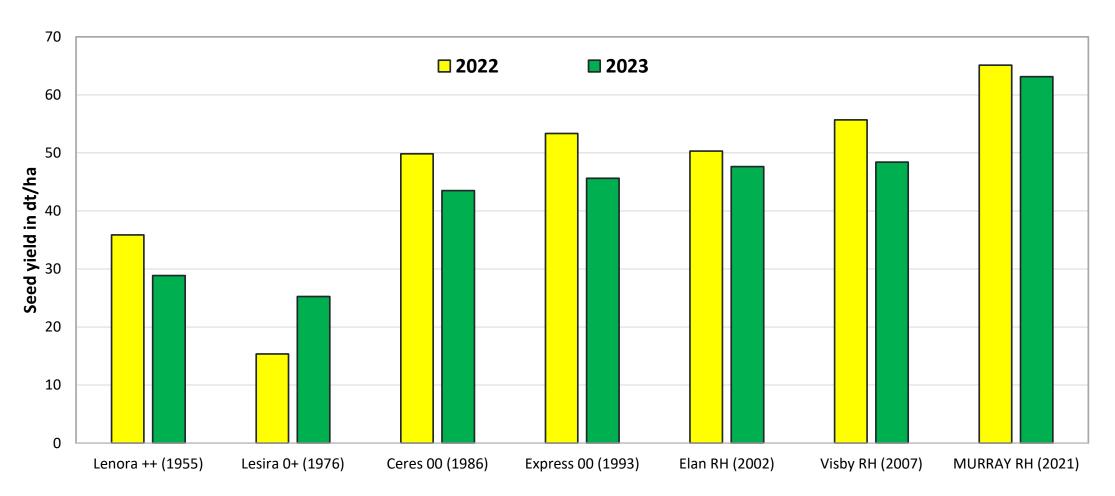





https://www.gov.uk/government/statistical-data-sets/agriculture-in-the-united-kingdom

June DEFRA Census \_England Crop Areas, Destatis, Eurostat

## SAME POTENTIAL, BUT DIFFERENT TRENDS...






https://www.gov.uk/government/statistical-data-sets/agriculture-in-the-united-kingdom
June DEFRA Census England Crop Areas, Destatis, Eurostat

## CHALLENGING TREND, DESPITE VISIBLE BREEDING PROGRESS





**Source:** NPZ, demo trials 2022 & 2023, Location = Hohenlieth, n = 1 plot per variety, Number in brackets = year of registration

# **CURRENT STATUS QUO & OPEN?**

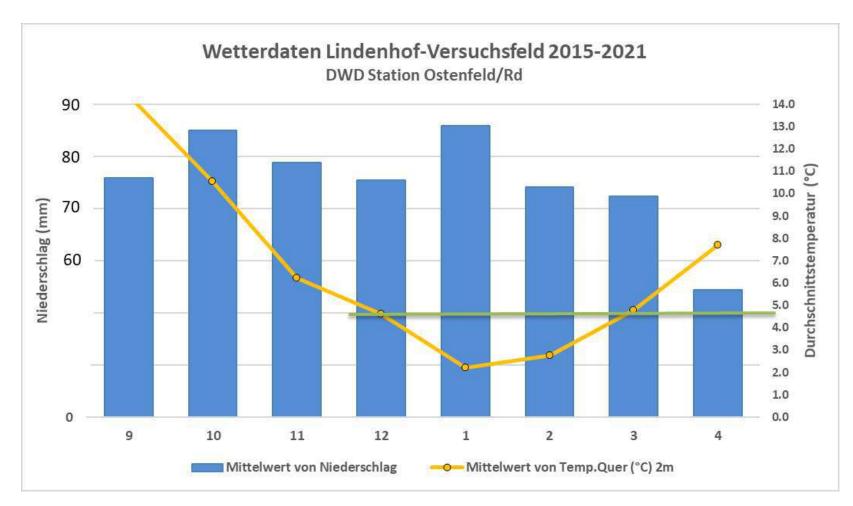


- Clear decrease in the national rapeseed acreage since 2012
  - UK: from rapeseed exporter to net importer (food security?)
- Difficulties to transfer the genetical yield potential from official trials onto farm level
- Genetic gain is still ca. 2% per year, but environmental conditions (climate stress, new pests and pesticide limitations) neutralize it
- Do we need new crop management strategies? Later sowing?
- Is early sowing a reason for limited yields?

# Development of oilseed rape in a maritime climate in Schleswig-Holstein

Online-Meeting LSPB

13.12.2023


Dr. Ute Kropf







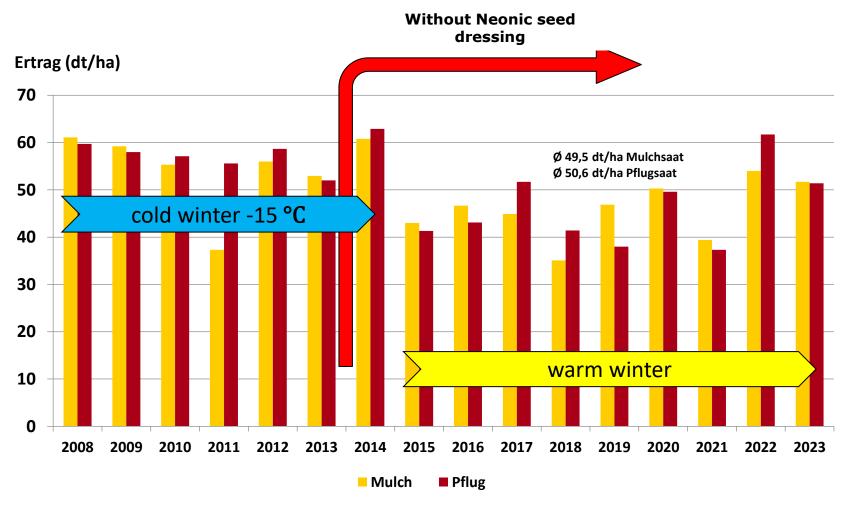
## **Lindenhof trial station**



## **Schleswig-Holstein** Östliches Hügelland

#### Soil

Para-brown earth
Loamy sand to sandy Loam,
< 12 % clay
40-50 Bodenpunkte
3-4 % organic matter


#### Climate

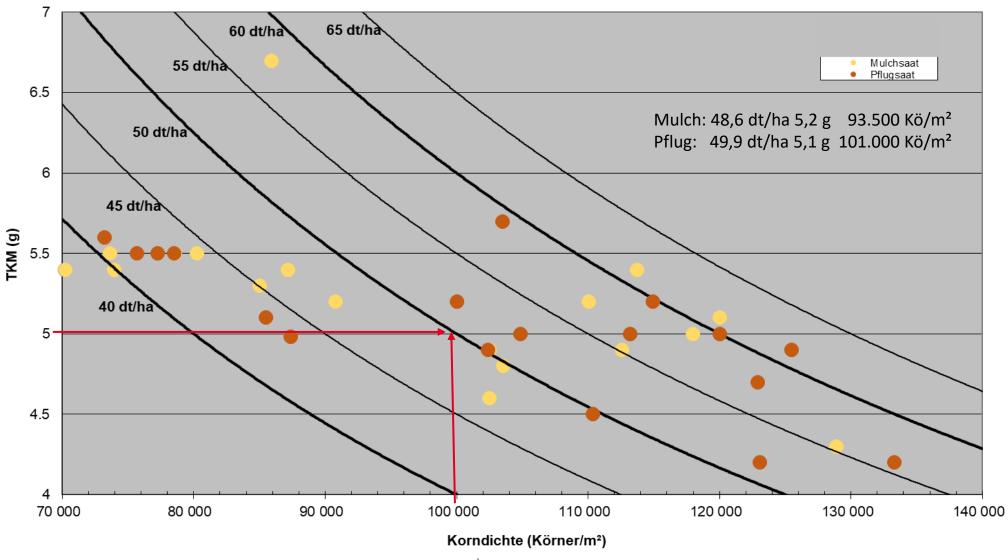
Maritime 855 mm rainfall (5 years) 9,9 °C (5 years)

GPS **54.319770**, 9.804266



## OSR: Yield in a 5 year rotation osr-w-fb-w-ba



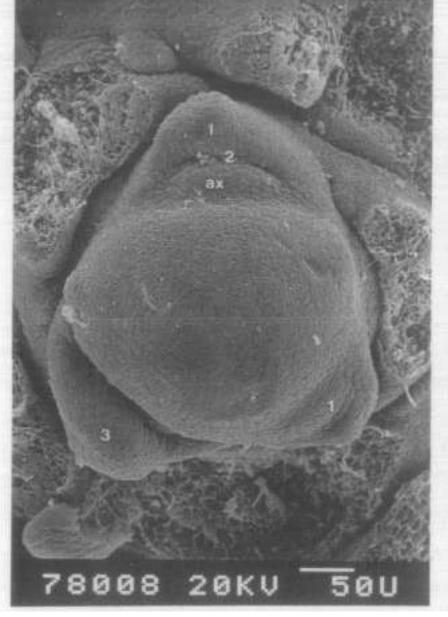

Normal sowing date 26.-30.8.

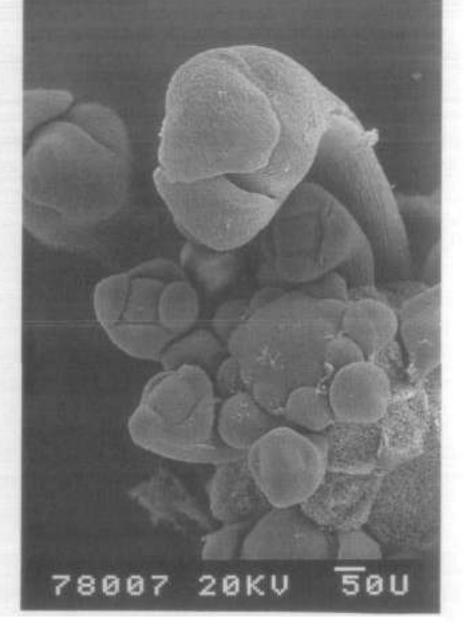
(Late sowing date) 5.-10.9.



Seite 26 © Dr. Ute Kropf

#### Yield components of oilseed rape 2006-2021 Lindenhof trial station



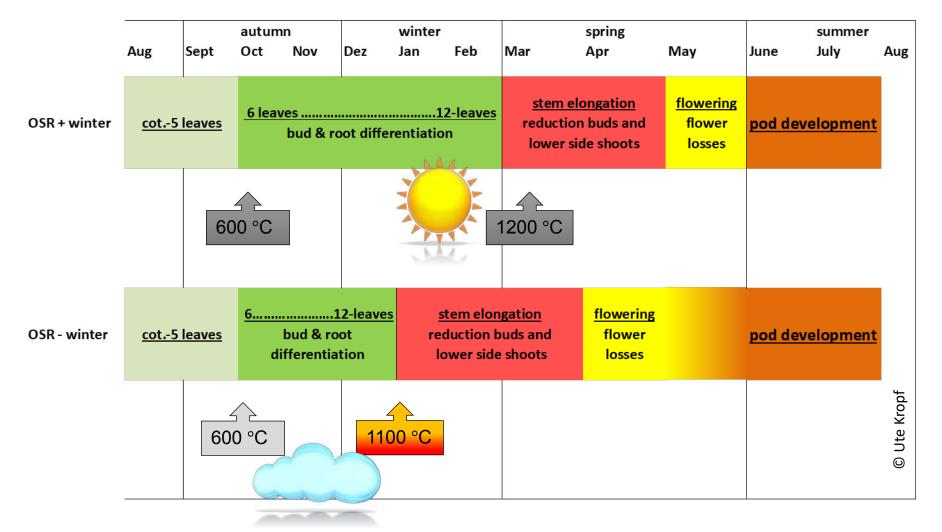












**Leaf stage** → **flower bud stage** 





## Vegetativ and generative development



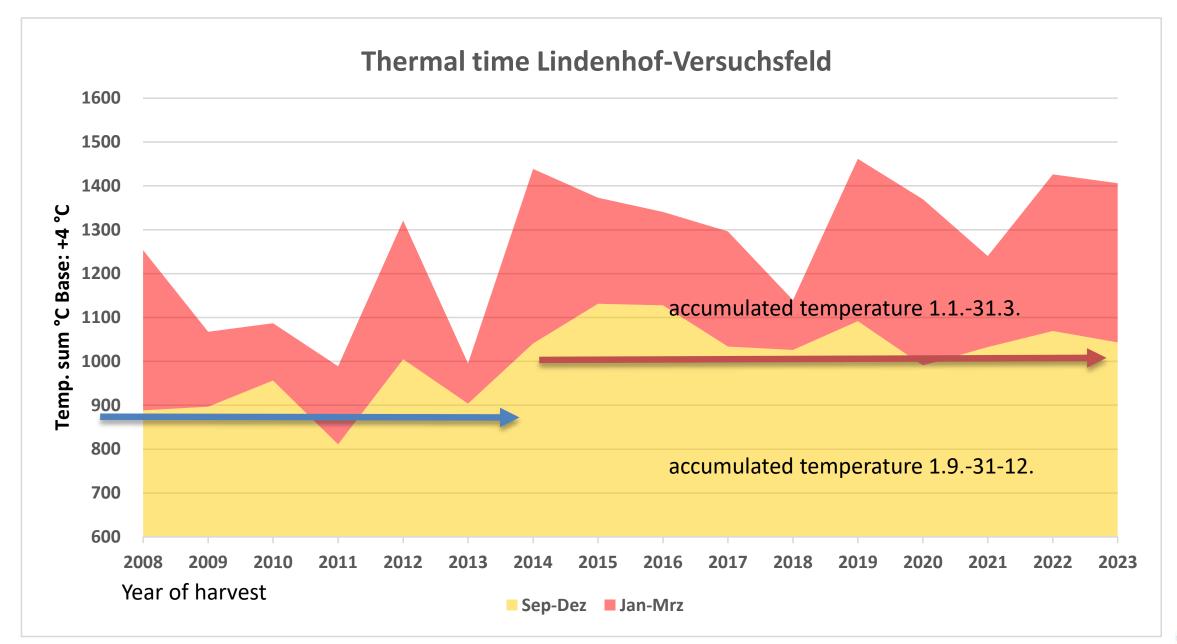


Seite 33 © Dr. Ute Kropf

## **Temperature & development Lindenhof**

150 °C Emergence -> cotyledon

Each pair of leaves 120-150 °C depending on daylength, light-intensity, variety


End bud diff. = beg stem elong. 1000-1200 °C

Less in Tuyy var. ???? Min. development autumn 8-10 leaves

last week in August → 1000 °C Normal sowing date:

Late sowing date: ca. 10. September → 800 °C + less light → 8-leaf







## **Accumulated temperature: Lindenof vs Cambridge**

| Temp. sum, base 4 °C |                      |                      |                      |                      |                        |                        |
|----------------------|----------------------|----------------------|----------------------|----------------------|------------------------|------------------------|
| Year of harvest      | Lindenhof<br>Sep-Dez | Lindenhof<br>Jan-Mrz | Cambridge<br>Sep-Dec | Cambridge<br>Jan-Mar | 1000 Grad<br>Cambridge | 1000 Grad<br>Lindenhof |
| 2008                 | 888                  | 366                  |                      |                      |                        |                        |
| 2009                 | 897                  | 170                  |                      |                      |                        |                        |
| 2010                 | 957                  | 130                  |                      |                      |                        |                        |
| 2011                 | 811                  | 178                  |                      |                      |                        |                        |
| 2012                 | 1005                 | 316                  |                      |                      |                        |                        |
| 2013                 | 904                  | 92                   |                      |                      |                        |                        |
| 2014                 | 1041                 | 398                  |                      |                      |                        |                        |
| 2015                 | 1131                 | 242                  |                      |                      |                        |                        |
| 2016                 | 1128                 | 212                  |                      |                      |                        |                        |
| 2017                 | 1034                 | 263                  |                      |                      |                        |                        |
| 2018                 | 1026                 | 114                  |                      |                      |                        |                        |
| 2019                 | 1092                 | 370                  |                      |                      |                        |                        |
| 2020                 | 991                  | 379                  |                      |                      |                        |                        |
| 2021                 | 1033                 | 207                  |                      | 448                  |                        |                        |
| 2022                 | 1069                 | 357                  | 1326                 | 560                  | 19. Sep                | 06. Sep                |
| 2023                 | 1043                 | 363                  | 1293                 | 533                  | 18. Sep                | 04. Sep                |
| 2024                 | 1015                 |                      | 1200                 |                      |                        |                        |
| Avg                  | 1056                 | 360                  | 1310                 | 547                  |                        |                        |
|                      |                      |                      | plus 230             | plus 205             |                        |                        |



Seite 36 © Dr. Ute Kropf









## **Summary**

- Plant growth follows thermal time
- No dormancy over winter
- Bud differentiation ends several weeks earlier
- Earlier stem elongation and reduction of buds under poorer conditions
- How do we need to adapt production technology to the changed growth conditions?
- What genetic characteristics must future varieties have?



Seite 39 © Dr. Ute Kropf







Chris Guest



## SUMMARY



- Launch of new Verticillium ratings on the new AHDB RL 2024/25
- Despite visible yield progress we observe stagnant yield in practice, due to climate stress.
- Earlier sowing is potentially driving crop yields down although a mitigation tool for CSFB
- TuYV resistance varieties need less thermal development time (large % of market)- in consequence we observe many "overgrown" canopies.
- Therefore, delayed sowing into September could be part of a key crop management strategy moving forward – utilising on farm historic data e.g. Sencrop
- This is the start of a journey LSPB has a number of trials to deliver further figures for wider discussion in summer 2024.